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Abstract

In this paper, novel finite-difference time-domain (FDTD) schemes are introduced for the numerical solution of Max-
well’s equations on dual staggered Cartesian three-dimensional lattices. The proposed techniques are designed to accom-
plish optimized performance according to certain features and requirements dictated by the investigated problems, thus
making efficient use of the available computational resources. Starting from only few initial assumptions, a construction
process based on the minimization of specific error formulae is developed, which is later exploited to derive the final form
of the finite-difference operators. Previously, an elaborate analysis of the proposed indicators is provided, targeting at glo-
bal error control over all propagation angles. Our methodology guarantees upgraded flexibility, as accuracy can be max-
imized within either narrow or wider frequency bands, without practically inducing significant computational overhead.
Attractive qualities such as high convergence rates are now the natural consequence of the effective design process, rather
than the minimization of the truncation errors of the difference expressions. In fact, the proposed FDTD approaches verify
the possibility to attain improved levels of accuracy, without resorting to the traditional – Taylor based – forms of the
individual operators. A theoretical analysis of the inherent dispersion artifacts reveals the full potential of the new
algorithms, while numerical tests and comparisons unveil their unquestionable merits in practical applications.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The continuous scientific research in the computational electromagnetics area, stimulated and motivated by
various engineering applications, has led to the development of diverse numerical techniques for the simula-
tion of wave-interaction phenomena. Among them, the finite-difference time-domain (FDTD) method has
been established as a relatively simple, efficient and adequately accurate – in several instances – numerical tool
[1,2]. Through extensive testing during the previous years, the FDTD algorithm has been proven to be
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especially suited for problems incorporating domains of small or moderate at most electrical size. Unfortu-
nately, its accuracy is rendered questionable when studying electrically large structures. Moreover, poor per-
formance may be observed even in small-scale simulations, if stringent accuracy requirements must be fulfilled
for elongated time periods. Such undesirable situations are the natural consequences of the adopted second-
order space–time approximations, and can undoubtedly constitute limiting factors when investigating electro-
magnetic problems of contemporary interest.

In essence, the FDTD-related inaccuracies do not manifest themselves as randomly distributed or generated
errors, but appear with the form of numerical dispersion and anisotropy artifacts. The latter are recognized as
one of the most significant sources of error (others may be related to the rather limited geometric flexibility of
the structured Cartesian grids), whose detrimental consequences are further aggravated by their accumulative
nature. As a result, fundamental properties of electromagnetic waves may not be always preserved to a reliable
degree in simulations entailing energy propagation, thereby producing misleading numerical conclusions.

Unfortunately, within the rather limited framework of Yee’s algorithm, the available choices for accuracy
upgrade are directly related to the adoption of finer grid resolutions (which, due to stability limitations, also
imply smaller time-steps). This kind of solutions is rarely attractive, as the low order of the classic FDTD
method renders mesh refining quite costly (and often prohibitive). On the other hand, notable accuracy
improvement can be ensured if the second-order approximations are replaced by higher-order counterparts,
which are capable of accomplishing reduced error levels under the same computational cost. The relevant bib-
liography comprises various FDTD techniques that adopt high-order alternatives, such as explicit [3,4] or
implicit [5–7] spatial approximations, combined with enhanced time-integration processes, including leapfrog
and Runge–Kutta schemes [8], backward approximations [9], symplectic integrators [10], etc.

Since the best compromise between accuracy and computational cost remains an open matter for FDTD
methodologies, the fundamental question that needs to be answered is concerned with the characterization
of the adequacy or suitability of a finite-difference scheme for a given electromagnetic problem. In plain words,
how the approximations to space–time derivatives should be designed (given e.g. the stencil size), in order to
guarantee a solution with the highest degree of accuracy. On the other hand, it is generally recognized that
maximizing the formal order in finite-difference expressions is not the optimum way to treat numerical simu-
lations. Such an allegation simply implies that problems with different characteristics or accuracy requirements
must not be dealt with in a unified manner. In accordance with this practice, there have been reported some
instances – not only in computational electromagnetics – toward the design of problem-optimized finite dif-
ferences. For example, modified compact schemes were derived in [11] by requiring the vanishing of an error
formula at preselected frequency points, aiming for improvement at small wavelengths. Similarly, new approx-
imate expressions were obtained in [12] through the solution of properly defined minimization problems, while
control of both phase and amplitude errors was performed in [13]. Minimization of dispersion errors was also
carried out in [14], where a (2, 4)-like FDTD technique with high phase accuracy was developed, to deal with
electrically large structures. A collection of finite-difference approaches that are capable of providing ‘‘flexible
local approximations’’ was recently demonstrated in [15], referring to a wide variety of problems. As shown,
these discretization strategies exploit the fact that specific features of the exact solutions are known a priori
(the non-standard FDTD method [16,17], based on a single-frequency tuning, can be included in this category
as well). Other higher-order FDTD algorithms [18,19] were optimized within specific frequency bands and/or
angular sectors, based on the minimization of special error functionals. Modified schemes based on the (2, 4)
stencil were constructed in [20], by minimizing errors along selected angles of propagation. A more generalized
design methodology was presented in [21], which enabled the development of various algorithms through sys-
tematic modifications of their characteristic equations. We could also refer to some approaches that improve
conventional FDTD methods by altering the constitutive parameters of the background media [22,23]. Appar-
ently, they too can be considered equivalent to applying modified operators in conjunction with the physical
materials.

It becomes clear that contemporary computational challenges dictate the establishment of a general design
framework, founded on a solid theoretical basis, to enable flawless capturing and reproduction of electromag-
netic properties in discrete spaces, without at the same time sacrificing the inherent simplicity of traditional
FDTD methodologies. Towards this perspective, the present paper discusses the development of novel
three-dimensional (3D) FDTD schemes with optimum discretization properties, suitable for solving demand-
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ing electromagnetic problems with reasonable computational cost. Regarding their spectral accuracy, the pro-
posed algorithms exhibit attractive as well as adaptive capabilities in frequency bands determined by the inves-
tigated problems. Contrary to conventional trends, their formulation avoids the preservation of maximum
order of accuracy. Instead, estimation of the dispersion errors is pursued, according to formulae derived from
the discrete Maxwell’s equations, and the – initially parametric – finite-difference operators are then specified,
by requiring the elimination of numerical inaccuracies. It is proved that optimization at a single-frequency
point leads to techniques especially suited for time-harmonic problems, while the more challenging issue of
wideband optimization is treated efficiently by performing error control at two distinct frequencies. A key fea-
ture of the new schemes is the geometric structure of the spatial approximations, which introduce additional
sample points and posses a multidimensional configuration. Since the spectral reliability of the proposed
approaches is directly associated to problem-related restrictions, efficient exploitation of computational
resources is accomplished. The new algorithms thereby perform significantly better than traditional FDTD
schemes, providing optimum discretization strategies for the electromagnetic equations on 3D computational
grids. Their success is finally verified not only through theoretical investigation of the attained dispersion and
anisotropy mitigation, but also by testing the proposed concepts in practical simulations.

2. Motivation for the development of novel FDTD schemes

The vast majority of the high-order FDTD methods proposed in the literature are based on difference oper-
ators that maximize the order of their truncation error, as the latter results from the implementation of Taylor
series expansion. Specifically, symmetric expressions of the form
of
ou
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2
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are mainly selected for the spatial derivatives (asymmetrical stencils may introduce artificial dissipation, usu-
ally not required in the type of simulations considered here). Maximizing the formal order of the correspond-
ing approximation simply implies that M = N. For instance, it is C1 = 1 when N = 2, C1 = 9/8 and C2 = �1/
24 when N = 4, and C1 = 75/64, C2 = � 25/384 and C3 = 3/640 when N = 6, defining operators of second,
fourth and sixth order, respectively. Along similar lines, as shown in relevant publications, several time-inte-
gration schemes can be designed (including leapfrog, Runge–Kutta, or symplectic methods) by computing
Taylor-based approximations of a matrix exponential, which corresponds to the exact solution of Maxwell’s
semi-discrete system.

As briefly mentioned in Section 1, our motivation for developing novel FDTD schemes is actually the fact
that the traditional types of finite differences do not constitute optimum choices for dealing with numerical
wave propagation. In essence, the utilization of Taylor-based approximations unavoidably stipulates the treat-
ment of electromagnetic problems according to a unified practice. It is easily understood that special require-
ments pertinent to the examined problem are overlooked in this way. Let us not forget that the common origin
of the aforementioned expressions has an obvious impact on algorithmic performance in the frequency
domain. Since accuracy improves only when the discretization steps become smaller, low-frequency bands
are always characterized by lower error levels. Apparently, this cannot be a sign of optimum performance.
In other words, Taylor-based expressions lack the necessary flexibility to enable a problem-dependent manip-
ulation. In addition, the shortcomings of conventional finite-differences also become obvious when spatial and
temporal discretizations do not maintain identical formal orders. Consider for example, the case of the well-
known (2, 4) scheme [3,4]. The incorporation of the second-order time-stepping renders the fourth-order spa-
tial approximations practically useless, unless very fine temporal increments are selected (a solution with high
computational cost). In fact, we have shown in [24] alternative ways to significantly improve the accuracy of
the (2, 4) approach close to the stability limit, by sacrificing the formal accuracy and retaining the spatial
stencil.

Consequently, we are motivated to construct FDTD techniques to deal with ‘‘difficult’’ electromagnetic
problems, which may incorporate electrically extended domains (discretized with possibly coarse grids) and
call for elongated time integration. As conventional formulations do not possess the necessary flexibility,
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the proposed schemes are required to have certain properties, with the most significant one being the capabil-
ity to adjust their reliability range in the frequency domain according to the examined problem’s requirements.
The fulfillment of this objective heavily relies on the following mathematical analysis, which aims at establish-
ing a credible way of estimating discretization errors. In the next section, the foundation of the new FDTD
methods is thoroughly explained.

3. Algorithmic structure and error estimators in 3D

3.1. General features

If we assume that electric and magnetic fields are staggered in time, then according to the standard leapfrog
integrator the corresponding quantities can be approximated by the following update equations:1
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The 3 symbol over $ indicates that the exact nabla operator has been replaced by a discrete form. It should
be mentioned that, although (2) and (3) resemble a formally second-order algorithm in time, higher-order
leapfrog integrators possess a similar structure as well [8]. For the approximation of spatial derivatives, a para-
metric family of finite-difference expressions with various stencils is introduced. Specifically, the first derivative
of a component f with respect to variable u, is calculated according to
of
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at position (u,v,w) (apparently, coordinate permutations yield rotated versions of (5) that correspond to o
ov and

o
ow approximations). The stencil size and shape of the spatial operators is shown in Fig. 1, for various combi-
nations of N, M. The numerical dispersion relation for this type of approximations is obtained by substituting
appropriate Fourier modes in the discretized Maxwell’s equations, and has the following form:
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where ~k ¼ ~kuûþ ~kvv̂þ ~kwŵ is the numerical wavenumber.
e notation f jni1 ;i2 ;i3 denotes the value of component f at point (u,v,w) = (i1Du, i2Dv, i3Dw) and instant t = nDt.
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Fig. 1. Shape and size of the 3D spatial operators, for different choices of the parameters (N,M). The small square indicates the respective
point of calculation.
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The FDTD renditions that adopt operators (5) are conditionally stable, complying with the following upper
bounds for the time-steps:
Dt 6 c0
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which are determined after performing the necessary von Neumann analysis. The stability limits for known
schemes (e.g. Yee’s algorithm, Fang’s (2,4) method) can be derived from (7) as well.

Despite the fact that arbitrarily large values may be selected for parameters N, M (pursuing the highest level
of accuracy), our research is confined to N = 1,2,3 and M = 1,2,3. These choices have been found to enable
sufficient improvement over standard approaches, implying at the same time small or no aggravation of the
entailed computational burden. In addition, maintaining the general structure of (2), (3) in the update equa-
tions contributes significantly in preserving much of the simplicity pertinent to the classic Yee scheme, which is
deemed a feature of considerable importance.

3.2. Definition of error estimators

We now focus our attention to the design of operators (5) that guarantee low error levels. As known, it is
impossible to find an analytical solution for (6), which would otherwise accommodate an error analysis.
Instead, the evaluation of FDTD-related inaccuracies is attempted in an implicit – but equally reliable – man-
ner. Although error formulae based on the dispersion relations could be theoretically developed (see, for
instance, [18]), the procedure described below would be significantly more complex. Therefore, we choose
to follow a slightly different path.

Let us assume plane waves propagating along a direction specified by the angles (h,/) in the spherical coor-
dinate system. If n̂ ¼ sin h cos /x̂þ sin h sin /ŷþ cos hẑ ¼ nxx̂þ ny ŷþ nzẑ is the unit vector toward this direc-
tion and g ¼

ffiffiffiffiffiffiffi
l=�

p
the intrinsic impedance of the background medium, the electric-field intensity is related to

the magnetic-field intensity through
E ¼ �gn̂�H: ð8Þ

The magnetic-field vector comprises three individual components,
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where, apparently, (h 0,/ 0) are characteristic of the field’s polarization. Taking (8) and (9) into account, Max-
well’s equation �otE = $ · H reduces to the following three scalar equations:
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By substituting plane-wave forms H ¼ H 0e|ðxt�~kxx�~ky y�~kzzÞ ð| ¼
ffiffiffiffiffiffiffi
�1
p

Þ in (10), and applying the proposed
approximants, we are led to the compact formulation
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In order to ensure algorithmic reliability, the constant coefficients Cu
l ; Dv

l ; Dw
l , that minimize the difference

between the numerical ~k and the exact wavenumber k = x/c0 should be calculated. We assert that an equiv-
alent approach is to enforce ~kðx; h;/Þ ¼ kðxÞ in (11) and require that the value of ½F ðx; k; h;/Þ�
ð¼ ½Fðx; h;/Þ�Þ be as close to zero as possible. Apparently, ½Fðx; h;/Þ� cannot vanish for all frequencies/
propagation angles, since this would imply a complete elimination of dispersion and anisotropy errors under
any discretization conditions. However, one may intuitively realize that the closer the value of ½F � is to zero,
the more accurate the corresponding FDTD scheme will be. Consequently, it is a natural choice to use ½F � as a
measure of the inherent discretization inaccuracies and pursue the determination of the parametric operators
via an error-minimization process. The latter apparently requires treating each F u, u = x,y,z, separately (the
next subsection is concerned with this analysis). It is interesting to note that analogous formulas were pro-
posed for the dispersion-relation-preserving schemes in [19] (although derived via different considerations,
by assuming specific (TEz) polarization for the numerical plane-wave solutions). The allegation that the indi-
vidual F u expressions constitute reliable descriptions of the inherent errors can be further supported, if their
behavior is examined in case of algorithms with well-known properties. For instance, the validity of the fol-
lowing conclusions is easily certified (see Appendix A for details):

� In the case of Yee’s method, we find that FYee
u ðx; h;/Þ ¼ OðDu2Þ þOðDt2Þ.

� For the (2,4) FDTD scheme, we obtain F ð2;4Þu ðx; h;/Þ ¼ OðDu4Þ þOðDt2Þ.
� For Fang’s fourth-order approach, it is proved that F ð4;4Þu ðx; h;/Þ converges to zero at a fourth-order rate.

3.3. Analysis of error estimators

Before proceeding further, a crucial point is to recognize that, despite the dependence of ½F � on three vari-
ables (x,h,/), its minimization is actually required at specific frequencies and for all propagation angles. Opti-
mization for some particular h, / will produce small errors along individual directions of propagation, a
property that can be advantageous only in certain types of problems (involving e.g. guided wave propagation).
Nevertheless, a globally useful numerical approach is generally expected to be capable of ensuring accurate
field calculations irrespective of (h,/). On the other hand, a similar observation is not valid when the accuracy
dependence on frequency is examined, as FDTD schemes are not necessary to be reliable for all possible wave-
numbers coupled to the grid. Recall that wideband simulations refer to specific parts of the spectrum (known
in advance), as these are mainly determined by the spectral content of the excitation sources. In addition,
dispersion artifacts become more detrimental, if they correspond to coarser discretizations (hence, high-fre-
quency regions pose the most severe accuracy requirements). Consequently, one is satisfied by a numerically
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reliable solution only within specified frequency bands and, therefore, band-limited optimizations seem to be
sufficient.

The aforementioned observations indicate that we should reformulate the error estimators in a suitable
manner, in order to facilitate their minimization at selected frequencies, without overlooking the fact that
the error mitigation should be performed irrespective of the direction of wave propagation. Keeping these
matters in mind, let us initially consider the case of F z. The proposed design procedure is based on the expan-
sion of F z with respect to spherical surface harmonics [25], defined as
Y m
n ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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F z comprises terms of the form sin(acosh), sin(acosh)cos(b sinhcos/) and sin(acosh)cos(b sinh sin/).
Regarding the first one, it has been shown in [19] that its series expansion consists of harmonic functions with
m = 0:
sinða cos hÞ ¼
X1
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and the integral T n is obtained through the recursive formula
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The necessary first two terms in (18) are given by
T 1ðaÞ ¼
2

a2
ðsin a� a cos aÞ; ð19Þ

T 3ðaÞ ¼
2

a4
½ð15� a2Þa cos aþ 3ð2a2 � 5Þ sin a�: ð20Þ
Combining (15) with the addition theorem for Legendre polynomials [25] (which facilitates the change of the
reference axis), we have been able to determine the expansion series for the remaining terms of F z. To accom-
modate the application of the addition theorem, the term sin(acosh)cos(bsinhcos/) is re-arranged according
to the following form:
sinða cos hÞ cosðb sin h cos /Þ ¼ 1

2
sin
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The angles c1 and c2 are the ones that the unit vector n̂ forms with the directions specified by
(H1,U1) = (tan�1(b/a),0) and (H2,U2) = (tan�1(b/a),p) (as implied, Hi and Ui, i = 1,2 are calculated with re-
spect to the z- and x-axis, respectively). Taking (15) into account, the two terms in the right-hand side of (21)
can be replaced by the equivalent formulas
sin
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for i = 1,2. It is now easy to show that the implementation of the addition theorem results in
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In essence, it is deduced that
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which means that the examined term involves additional surface harmonics, compared to sin(acosh). The ana-
lytic expression for the expansion coefficients is
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The analysis of sin(acosh)cos(b sinh sin/) is similar to (24), with the only difference being the sign of individ-
ual terms. In fact, we have
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2nþ1ðh;/Þ; ð28Þ
where the multiplying coefficients are related to those of (25) via
c00n;mða; bÞ ¼ ð�1Þm=2c0n;mða; bÞ: ð29Þ
Taking into account all the aforementioned findings, the expansion of F z is given by
F zðx; h;/Þ ¼
X1
n¼0

Xn

m¼0

Cz
2nþ1;2mðxÞY 2m

2nþ1ðh;/Þ; ð30Þ
where
Cz
n;mðxÞ ¼

ffiffiffiffiffiffi
4p
3

r
1

c0Dt
sin

xDt
2

� �
dn�1dm �

1

Dz

XN

l¼1

Cz
lcn

2l� 1

2
kDz

� �
dm

� 2

Dz

XM

l¼1

Dx
lc
0
n;m

2l� 1

2
kDz; kDx

� �
þ Dy

l c
00
n;m

2l� 1

2
kDz; kDy

� �� �
: ð31Þ
As seen, the first dominant terms in the expansion series are related to the functions Y 0
1, Y 0

3, Y 2
3, Y 0

5, Y 2
5, Y 4

5, etc.
Before proceeding further, it should be mentioned that the above results, although derived for the F z esti-

mator (which corresponds to the z-derivative), are sufficient for the other two error expressions as well. Spe-
cifically, no additional analysis for F x or F y is necessary, as long as the harmonic functions in their expansion
series are expressed with respect to their corresponding axis (x-axis for F x, y-axis for F yÞ and not the z-axis
(this is equivalent to performing a simple axis rotation before the calculation of each series). Under this
assumption, the remaining expansions are easily obtained from (30) by circularly permuting the position of
the spatial increments.

4. Novel FDTD schemes with optimized performance

In this section, the presented mathematical analysis is exploited for the determination of the parametric
finite-difference operators, so as to comply with specified accuracy requirements. Obviously, the natural choice
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is to select those values for the constants ðCu
l ;D

v
l ;D

w
l Þ that guarantee low levels for the proposed error estima-

tors. As one may suspect, the series expansion of the latter facilitates this task, since the vanishing of the dom-
inant terms should suffice to guarantee small values for ½F �. It is also understood that the accomplishment of
this objective at a given frequency x implies the zeroing of the corresponding multiplying coefficients Cu

n;mðxÞ
which, among others, are linear functions of the unknowns (due to the ‘‘decoupling’’ (30) of the spectral and
angular dependence, the selection of a ‘‘preferred’’ direction of propagation is avoided). Consequently, our
initial quest for algorithmic reliability leads to a set of algebraic equations, whose solution defines operators
satisfying the imposed accuracy restrictions. Clearly, the maximum number of vanishing terms is directly
related to the number of unknowns, which depends on the stencil size of the spatial approximations. There-
fore, our methodology unveils the inevitable connection between the entailed computational overhead and the
maximum attainable accuracy, which, as shown later, cannot be reached by conventional FDTD
formulations.

In the following paragraphs, a family of FDTD algorithms with different capabilities is presented. To ren-
der them easily identifiable, we will be using the notation S{N,M,L}, where the parameters N, M describe the
shape and size of the spatial stencil (recall (5)), while L indicates the number of design frequency points (this
parameter is further explained later and can be set equal to either 1 or 2).

4.1. Narrowband optimization

Maximizing the accuracy within a small frequency band probably constitutes the simplest case, because it
requires error minimization at only one frequency point, designated by the part of the spectrum we are inter-
ested in. This approach is deemed appropriate when most or all of the electromagnetic power related to a
numerical simulation is confined within a narrow area, around an angular frequency x0. It is apparent that
the minimization of F u at x0 should be sufficient to ensure an adequate algorithmic performance. Taking into
account that each of the spatial operators incorporates N + 2M undetermined coefficients, we seek an equal
number of algebraic equations. In other words, the single-frequency tuning of the discretization scheme
requires the vanishing of N + 2M terms in each of the error estimators. For instance, the S{1,1,1} scheme
adopts a z-derivative approximation that is determined from the solution of the three equations
Cz

1;0ðx0Þ ¼ Cz
3;0ðx0Þ ¼ Cz

3;2ðx0Þ ¼ 0, or the system
Table
Coeffic

Cu
1

Cu
2

Cu
3

Dv;w
1

Dv;w
2

Dv;w
3

c1
k0Dz

2

� �
2c01;0

k0Dz
2
; k0Dx

� �
2c001;0

k0Dz
2
; k0Dy

� �
c3

k0Dz
2

� �
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k0Dz
2
; k0Dx

� �
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k0Dz
2
; k0Dy

� �
0 2c03;2

k0Dz
2
; k0Dx

� �
2c003;2

k0Dz
2
; k0Dy

� �
2
664

3
775

Cz
1

Dx
1

Dy
1

2
64

3
75 ¼

ffiffiffiffi
4p
3

q
Dz

c0Dt sin x0Dt
2

� �
0

0

2
664

3
775; ð32Þ
where k0 = x0/c0. Similar systems are formulated for the other two spatial approximations. As expected, the
same procedure is applied for the extraction of the S{2,1,1}, S{2,2,1} and S{3,3,1} algorithms, through the
solution of 4 · 4, 6 · 6 and 9 · 9 systems, respectively. For reference, the coefficients that define the operators
of the S{N,M, 1} methods, optimized at 10 cells per wavelength, are given in Table 1.

To gain a better insight into the individual properties of each scheme, the overall discretization error at four
design frequencies is estimated in Table 2. In order to take into account all possible directions of propagation,
inaccuracies related to the numerical phase velocity ~cðx; h;/Þ are evaluated via the definition
1
ients for S{N,M, 1} schemes, optimized for a k/10 grid density

S{1,1,1} S{2,1,1} S{2,2,1} S{3,3,1}

0.8394744 0.9045670 1.0680281 1.1427505
0.0 �0.0099276 �0.0238882 �0.0523487
0.0 0.0 0.0 0.0020441
0.0429073 0.0331249 0.0144771 0.0071881
0.0 0.0 �0.0049752 �0.0036786
0.0 0.0 0.0 0.0007709



Table 2
Error e3D vs cell size for various schemes when Dx = 1.5Dy = 2Dz

Scheme Dx = k/10 Dx = k/20 Dx = k/40 Dx = k/80 Rate

Yee 3.357 · 10�3 8.295 · 10�4 2.068 · 10�4 5.166 · 10�5 �2.01
(4,4) 9.416 · 10�5 5.928 · 10�6 3.713 · 10�7 2.322 · 10�8 �4.00
S{1,1,1} 5.837 · 10�6 3.591 · 10�7 2.232 · 10�8 1.839 · 10�9 �3.88
S{2,1,1} 3.787 · 10�6 2.321 · 10�7 1.443 · 10�8 9.010 · 10�10 �4.01
S{2,2,1} 6.836 · 10�8 1.049 · 10�9 1.632 · 10�11 2.665 · 10�13 �5.99
S{3,3,1} 1.347 · 10�9 5.115 · 10�12 2.084 · 10�14 2.804 · 10�16 �7.40

Table
Coeffic

Cu
1

Cu
2

Cu
3

Dv;w
1

Dv;w
2
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e3DðxÞ ¼
1

4p

Z p

0

Z 2p

0

1� ~cðx; h;/Þ
c0

����
���� sin hdhd/: ð33Þ
For each case, the maximum allowable time-step is considered. From the presented results, it can be deduced
that both the S{1,1,1} and S{2,1,1} schemes accomplish fourth-order convergence at the design points, with
the second technique ensuring extra improvement of approximately 35%. On the other hand, the S{2,2,1}
method exhibits a sixth-order rate of convergence, while the S{3,3,1} version is capable of improving its accu-
racy at an eighth-order rate (apparently, the slightly lower average rate given in Table 2 is due to the fact that
machine precision is rapidly reached). For comparison purposes, the results concerning Yee’s scheme, as well
as Fang’s (4, 4) method, are also calculated, verifying the superior quality of the proposed algorithms.

At this point, it should be clarified that the proposed optimization procedure does not produce valid results
for all possible combinations of N and M. In essence, the requirements imposed when enforcing very low val-
ues for the error estimators cannot be always satisfied by all types of difference approximations (such a diffi-
culty was not encountered in the two-dimensional case [26], at least for the examined examples). This fact
undoubtedly exposes the inherent complexity of any effort aiming at the improvement of FDTD performance
in 3D configurations. Nevertheless, the schemes developed in this paper are deemed sufficient for the vast
majority (if not all) of contemporary electromagnetic problems.

4.2. Broadband optimization

Presumably, the proposed S{N,M, 1} algorithms are not designed to handle simulations with wideband
spectral content. A more appropriate way to control discretization artifacts over an extended frequency range
is to require the minimization of the error expressions at two distinct frequency points (as, in this way, one
expects weaker dispersion effects within the spectrum’s part defined by these points). If the latter are denoted
by x1 and x2 (x1 > x2), the necessary equations can be extracted from the vanishing of the first p terms of
F uðx1; h;/Þ and the first N + 2M � p terms of F uðx2; h;/Þ, 1 6 p 6 N + 2M � 1. Complying with this strat-
egy, we have been able to derive the following S{N,M, 2} schemes (the conditions pertaining to the error-con-
trol process are also given):

� S{2,1,2} scheme: Cu
1;0ðx1Þ ¼ Cu

3;0ðx1Þ ¼ Cu
3;2ðx1Þ ¼ Cu

1;0ðx2Þ ¼ 0.
� S{2,2,2} scheme: Cu

1;0ðx1Þ ¼ Cu
3;0ðx1Þ ¼ Cu

3;2ðx1Þ ¼ Cu
5;0ðx1Þ ¼ Cu

5;2ðx1Þ ¼ Cu
1;0ðx2Þ ¼ 0.

� S{3,1,2}a scheme: Cu
1;0ðx1Þ ¼ Cu

3;0ðx1Þ ¼ Cu
3;2ðx1Þ ¼ Cu

5;0ðx1Þ ¼ Cu
1;0ðx2Þ ¼ 0.

� S{3,1,2}b scheme: Cu
1;0ðx1Þ ¼ Cu

3;0ðx1Þ ¼ Cu
3;2ðx1Þ ¼ Cu

1;0ðx2Þ ¼ Cu
3;0ðx2Þ ¼ 0.
3
ients for S{N,M, 2} schemes, optimized for frequencies corresponding to k/10 and k/30 grid densities

S{2,1,2} S{2,2,2} S{3,1,2}a S{3,1,2}b

1.0309707 0.9968470 1.0744774 1.0840809
�0.0291920 �0.0178172 �0.0463203 �0.0505004

0.0 0.0 0.0032697 0.0041123
0.0141467 0.0225807 0.0120345 0.0119717
0.0 �0.0028121 0.0 0.0
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We have essentially pursued the elimination of a larger number of terms at the higher frequency x1, in order
to mitigate errors emanating from coarse spatial resolutions. For reference, the values of the operators’ coef-
ficients are given in Table 3, when it is selected x1/x2 = 3 for the design frequencies and Dx = Dy = Dz = k1/
10. Furthermore, Figs. 2–4 illustrate the spectral response of the proposed wideband techniques for various
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Fig. 2. Error e3D versus mesh density for the S{2,1,2} scheme, optimized at (20,40) and (30,50) cells per wavelength.
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pairs of optimization frequencies. As seen, the S{2,1,2} scheme presents an acute minimum at x1, and at the
same time outperforms the (4,4) method at all higher frequencies. A similar behavior is observed in the case of
the S{2,1,2} scheme, which also accomplishes slightly more intense changes in the error curves. On the other
hand, the S{3,1,2}a rendition is characterized by a mildly fluctuating error level within a wide frequency
range, whereas the S{3,1,2}b technique exhibits two distinct error minima. These figures definitely manifest
the attractive characteristics, as well as the upgraded performance of the new broadband algorithms. The
upcoming numerical tests will also validate these theoretical findings.

5. Discussion on boundary operators

A problem commonly encountered in the application of high-order FDTD methods is concerned with the
proper interface/boundary treatment, when modeling media with different electromagnetic properties. In
essence, difficulties emerge form the extended stencil of the adopted difference operators, whose implementa-
tion becomes problematic in areas within the vicinity of material boundaries. Since a naive or oversimplified
interface modeling can severely degrade the overall performance of the utilized high-order algorithm (thus
cancelling any possible merits), the solution of this issue has been the subject of investigation in various
papers. We hereafter mention some representative efforts.

For instance, a simple solution was applied in [14], where the high-order spatial operators were replaced by
second-order ones in positions near the interfaces. Unfortunately, such an approach, although straightforward
and easy to implement, may seriously affect both the accuracy and stability of the interior scheme. A similar,
but more sophisticated solution, was developed in [27], which was based on the hybridization of the (2,4)
FDTD method with a second-order subgridding strategy. Alternatively, other authors have proposed the sub-
stitution of the extended operators with one-sided counterparts in the critical areas, so that operator stencils
never cross boundaries. This concept was efficiently utilized in [4,9], while one-sided formulas were also ref-
erenced in [13], together with proper high-order extrapolation schemes. Furthermore, [6] combined analogous
expressions with low-pass spatial filters, in order to suppress spurious high-frequency components that can
potentially lead to numerical instabilities. According to a different perspective, the concept of directly enforc-
ing the physical jump conditions on the discrete level was extensively investigated in [28], where methodologies
based on a derivative-matching procedure and utilizing additional fictitious nodes were presented. Another
practice was investigated in a recent publication [29], which dictates local or global regularization of the dis-
continuous permittivity functions for mesh-conforming configurations. Consequently, as the aforementioned
methodologies are characterized by diverse advantages/diasdvantages, computational complexity and flexibil-
ity, the issue of high-order interface modeling in FDTD methodologies remains an open matter requiring fur-
ther investigation.

6. Numerical results

The first numerical example is concerned with the time evolution of the field that corresponds to two dis-
tinct modes, appearing in a cavity with perfectly conducting boundaries (the configuration is cubic with 10-cm
sides). The modes are characterized by the indices (3, 2,2) and (0, 1,4) and, consequently, resonate at the same
frequency, equal to 6.181 GHz. The desired waveforms are excited by enforcing the exact field distributions at
the first time-step. A total of 203m cells, m = 1,2,4, are used to construct the lattice, while the duration of the
corresponding simulations is selected 5000mDtYee s (DtYee is the time-step limit for the Yee scheme). Fig. 5
illustrates the maximum L2(t) errors with respect to Ex, observed during the refinement process. The upgraded
reliability, along with high rates of convergence (which are in agreement with the previous theoretical analy-
sis), are evident for the optimized FDTD methods.

To better appreciate the practical gains of the proposed algorithms, the maximum errors in the aforemen-
tioned problem are plotted in Fig. 6 as a function of the required simulation times (all tests were performed on
a single workstation with a Pentium 4-3.8 GHz processor and 1 GB of memory). It can be seen that the opti-
mized schemes provide a very attractive tradeoff between attained accuracy and necessary computational cost,
as they are all proven to be more efficient than Fang’s fourth-order method. Clearly, the enhanced error levels
of the new operators sufficiently compensate for their slightly increased computational complexity, thus estab-



10
−2.9

10
−2.8

10
−2.7

10
−2.6

10
−2.5

10
−2.4

10
−2.3

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Cell size (m)

M
ax

im
um

L
2(t

) 
er

ro
r

(4,4) method
S{1,1,1} scheme
S{2,1,1} scheme
S{2,2,1} scheme
S{3,3,1} scheme

Fig. 5. Maximum values of the L2 error versus the cell size, in the simulation of two cavity-modes with the same resonant frequency.

10
2

10
3

10
4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time (s)

M
ax

im
um

L
2(t

) 
er

ro
r

(4,4) method
S{1,1,1} scheme
S{2,1,1} scheme
S{2,2,1} scheme
S{3,3,1} scheme

Fig. 6. Maximum values of the L2 error versus the total simulation time, in the simulation of two cavity-modes with the same resonant
frequency.

2384 T.T. Zygiridis, T.D. Tsiboukis / Journal of Computational Physics 226 (2007) 2372–2388
lishing reliable computational models. In fact, compared to the conventional (4,4) approach, the qualitative
superiority of the S{2,2,1} and S{3,3,1} schemes becomes even more emphasized in refined grids, due to their
better convergence features.

Next, we consider the case of a 14.3-cm-long rectangular waveguide with a 2.286 · 1.016 cm cross-section.
Specifically, the propagation of the TE11 mode is simulated, by assigning boundary values to the two ports
according to the exact field distribution at all time-steps. Considering that the cutoff frequency is
16.145 GHz, the excitation frequency is set equal to 19 GHz. The structure is discretized with
14m · 6m · 89m grids, m = 1,2,4, and each simulation is carried out for 5000mDtYee s. The maximum values
of the calculated L2(t) errors for each case are shown in Fig. 7, where the superiority of the S{N,M, 1} schemes
in time-harmonic situations is once again verified. Similarly to the previous example, the proposed FDTD
methods exhibit the behavior revealed theoretically, thus enabling the advantageous and highly efficient
exploitation of computational resources.

The performance of the optimized algorithms is also evaluated on the basis of the involved computational
cost in the waveguide problem. For this reason, we set as our objective the error value that is produced by the
(4,4) method, when the 28 · 12 · 178 grid is used (.5.721 · 10�2), for a time period of 15.82 ns (this corre-
sponds to 10,000DtYee for this grid resolution). Given the desired level of accuracy, the minimum grid densities
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required to satisfy this threshold, as well as the respective simulation times, are determined for all schemes. In
addition, we consider the performance of two other reduced-dispersion techniques, proposed in the past: the
(2,4) method incorporating artificially anisotropic materials [23], and a narrowband technique, which encom-
passes modified spatial and temporal expressions in a (2, 4) computational stencil [24]. The obtained results are
exhibited in Fig. 8 and the significant reduction of the computational burden is evident, in the cases of the opti-
mized schemes. For reference, the grid sizes for each algorithm are given: 25 · 11 · 156 for the method of [23],
21 · 9 · 131 for the narrowband (2, 4) method, 21 · 9 · 134 for the S{1,1,1} scheme, 19 · 8 · 119 for the
S{2,1,1} technique, 11 · 5 · 66 for the S{2,2,1} approach and only 6 · 3 · 37 for the S{3,3,1} algorithm.
Clearly, the proposed solutions permit the utilization of coarser lattices to reach a desired error level, ensuring
considerable savings in terms of both computer time and memory.

The potential of the optimized methodologies in long-term examination of electromagnetic interactions is
demonstrated in the next numerical experiment, where a 10 · 14 · 18 cm cavity is modeled. Three modes are
excited, identified by the indices (1, 1,1), (1,4,2) and (3, 3,5). Since their resonant frequencies are 2.022, 4.834
and 6.919 GHz, respectively, the S{N,M, 2} algorithms are implemented, within a computational domain dis-
cretized by a 28 · 39 · 50 cell lattice. From Fig. 9, where the error in Ez at a specific position is drawn, the
significantly lower rate of increase can be verified for the S{2,1,2} (5.6 GHz, 3 GHz) and S{3,1,2}b
(6 GHz, 3 GHz) techniques, when compared to the (4, 4) method (the design frequencies are shown in paren-
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Table 4
Required mesh size and overall simulation’s duration for a given error level and various schemes, in the multimodal cavity problem

Method L2 error Grid size (cells) Simulation time (s) Speedup

Fang’s (4,4) 1.022 · 10�3 48 · 66 · 85 3449 –
S{2,2,2} 9.471 · 10�4 43 · 60 · 77 2199 1.6
S{2,1,2} 9.351 · 10�4 34 · 47 · 60 830 4.2
S{3,1,2}b 9.578 · 10�4 28 · 39 · 50 443 7.8
S{3,1,2}a 9.981 · 10�4 23 · 32 · 41 190 18.2
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theses). If the maximum values of the L2(t) error are compared, an improvement by 14 and 27.6 times is found,
respectively, thus revealing the quality of the practical merits. Furthermore, Fig. 10 presents a comparison
between calculated and exact waveforms, after several thousands of iterations have been completed. Even
in the case of Fang’s fourth-order approach, the predicted field values are characterized by non-trivial phase
errors (after approximately 75,000Dt(4,4) s), whereas milder discrepancies are detected for the S{2,2,2} algo-
rithm after 107,650Dt(4,4) s. An even more reliable field prediction is provided by the S{3,1,2}a technique,
where no deviation from the exact solution can be physically observed after a period of 232,000Dt(4,4).

Considering the previously analyzed configuration, we examine the computational burden produced by
each numerical scheme, in order to satisfy a pre-determined error level. Specifically, it is required that an
L2 norm value (with respect to Ex) close to 10�3 be ensured, after a simulated time period of approximately
34.53 ns. Under these assumptions, the necessary grid size and corresponding simulation times are given in
Table 4, along with the extracted speedup factors, with respect to Fang’s (4, 4) method. These results clearly
demonstrate the advantages of utilizing properly optimized finite-difference schemes, as they are capable
of guaranteeing considerable computational savings for a given accuracy level. It is easily understood
that, despite their increased cost per node, the coarser spatial lattices permit the selection of larger time steps,
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resulting in faster simulations (up to 18 times in this example). To make a last comment, given that the design
frequencies were selected rather empirically, other choices may lead to even better performance.

7. Conclusions

The aim of this paper has been the development of highly reliable FDTD techniques for the numerical
solution of the time-dependent Maxwell’s equations on 3D Cartesian lattices. This goal has been fulfilled by
proposing novel differencing schemes, which avoid the shortcomings induced by conventional design
approaches. By initially specifying merely the structure of the spatial operators, new algorithms are founded
on the minimization of proper algebraic expressions that serve as reliable error indicators. In essence, algo-
rithmic performance is fully adapted to fundamental features of both the examined problem (e.g. spectral
content) and the corresponding discrete model (e.g. space–time discretization density). As proved, the most
prominent quality of the developed approaches is their optimized character, not only at time-harmonic sit-
uations, but at extended frequency bands as well, thus permitting highly efficient – yet uncomplicated –
treatment of contemporary, 3D electromagnetic problems, possibly subject to strict accuracy requirements.
In this way, efficient exploitation of computational resources is ensured and powerful electromagnetic mod-
els are constructed.

Appendix A

We herein examine the convergence characteristics of the proposed error estimators, when adapted to well-
known FDTD schemes. Specifically, the corresponding F u expressions are analyzed according to Taylor series
expansion and we investigate whether (or not) the anticipated behavior is exhibited, in order to further justify
the validity of their designation as reliable error indicators.

Case 1: Yee’s method. For the case of Yee’s algorithm, we have Cu
1 ¼ 1, Cu

l ¼ 0 for l 6¼ 1, Dv
l ¼ Dw

l ¼ 0. By
using these values, it is obtained
FYee
u ðx; h;/Þ ¼

1

48
k3

uDu2 � x2

48
kuDt2 þOðDu4Þ þOðDt4Þ; ðA:1Þ
which is characteristic of second-order schemes.
Case 2: (2,4) method. For Fang’s (2, 4) technique, it is Cu

1 ¼ 9=8, Cu
2 ¼ �1=24, Cu

3 ¼ 0, Dv
l ¼ Dw

l ¼ 0. The
Taylor expansion of the error estimator now yields
F ð2;4Þu ðx; h;/Þ ¼ 3

1280
k5

uDu4 � x2

48
kuDt2 þOðDu6Þ þOðDt4Þ; ðA:2Þ
which reveals, once again, the true convergence rate of the examined technique.
Case 3: (4,4) method. Fang’s (4,4) FDTD scheme adopts a fourth-order leapfrog integrator and incorpo-

rates update equations with the form of (2), (3). The latter can be considered to apply spatial operators similar
to (5), as long as we set Cu

1 ¼ 9
8
� 1

24
ðc0DtÞ2ð 3

Du2 þ 2
Dv2 þ 2

Dw2Þ, Cu
2 ¼ � 1

24
þ 1

24Du2 ðc0DtÞ2, Dv
1 ¼ 1

24Dv2 ðc0DtÞ2,
Dw

1 ¼ 1
24Dw2 ðc0DtÞ2, Cu

3 ¼ Dv
2 ¼ Dw

2 ¼ Dv
3 ¼ Dw

3 ¼ 0. Under these conditions, we find that
F ð4;4Þu ðx; h;/Þ ¼ x4

3840
kuDt4 þ 3

1280
k5

uDu4 � 1

1152
ku½c2

0Dt2ðk2
uð3k2

u þ k2
v þ k2

wÞDu2 þ 2k4
vDv2

þ 2k4
wDw2Þ� þOðDu6Þ þOðDt6Þ þmixed terms of 6th order ðA:3Þ
i.e. the error estimator converges to zero at a fourth-order rate.
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